Steering a Particle Swarm Using Global Inputs and Swarm Statistics

نویسندگان

  • Shiva Shahrokhi
  • Lillian Lin
  • Chris Ertel
  • Mable Wan
  • Aaron Becker
چکیده

Microrobotics has the potential to revolutionize many applications including targeted material delivery, assembly, and surgery. The same properties that promise breakthrough solutions—small size and large populations—present unique challenges for controlling motion. Robotic manipulation usually assumes intelligent agents, not particle systems manipulated by a global signal. To identify the key parameters for particle manipulation, we used a collection of online games where players steer swarms of up to 500 particles to complete manipulation challenges. We recorded statistics from over ten thousand players. Inspired by techniques where human operators performed well, we investigate controllers that use only the mean and variance of the swarm. We prove the mean position is controllable and provide conditions under which variance is controllable. We next derive automatic controllers for these and a hysteresis-based switching control to regulate the first two moments of the particle distribution. Finally, we employ these controllers as primitives for an object manipulation task and implement all controllers on 100 kilobots controlled by the direction of a global light source.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Discreet Particle Swarm Optimization for a Multi-level Emergency Supplies Distribution Network

Currently, the research of emergency supplies distribution and decision models mostly focus on deterministic models and exact algorithm. A few of studies have been done on the multi-level distribution network and matheuristic algorithm. In this paper, random processes theory is adopted to establish emergency supplies distribution and decision model for multi-level network. By analyzing the char...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Particle Swarm Optimization for Hydraulic Analysis of Water Distribution Systems

The analysis of flow in water-distribution networks with several pumps by the Content Model may be turned into a non-convex optimization uncertain problem with multiple solutions. Newton-based methods such as GGA are not able to capture a global optimum in these situations. On the other hand, evolutionary methods designed to use the population of individuals may find a global solution even for ...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1706.02162  شماره 

صفحات  -

تاریخ انتشار 2017